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are:

(i) the natural appearance of the tri-bimaximal mixing pattern;

(ii) the complete absence of tree-level flavor violations in the neutral sector;

(iii) the absence of flavor gauge bosons;

(iv) the hierarchies in the charged lepton masses are explained via wave-function overlaps.

We present the minimal field content and symmetry breaking pattern necessary to obtain a

successful model of this type. The bounds from electroweak precision measurements allow

the KK mass scale to be as low as ∼ 3TeV. Tree-level lepton flavor violation is absent in this

model, while the loop induced µ→ eγ branching fraction is safely below the experimental

bound.
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1. Introduction

Warped extra dimensions [1] provide a simple framework for fermion masses: exponential

hierarchies are naturally generated due to the overlap of fermion and Higgs wave func-

tions [2, 3], implementing the split fermion idea of [4]. In the simplest 5D “anarchic”

approach [5, 6], where both the 5D bulk masses and the brane Yukawa couplings are as-

sumed to be random, one generates a hierarchy both in the 4D standard model (SM)

fermion masses and their mixing angles. This seems to fit the observed pattern of quark

mixings and masses very well, since both the CKM matrix and quark masses show a hi-

erarchical pattern. The lepton sector, however, is different: two of the observed neutrino

mixing angles are close to maximal, rather than being hierarchical [7]. This suggests that

one needs to radically change the implementation of fermion masses in warped extra dimen-

sional models in order to achieve the correct lepton mixing pattern. Instead of a fully 5D

anarchical approach, it calls for partial flavor symmetries, which will make sure that two

of the neutrino mixing angles are not small, but close to maximal. The usual hierarchies

can still be used to generate the hierarchies in charged lepton sector.

In fact, the necessary appearance of flavor symmetries is welcome for these models. An-

archic 5D flavor structure necessarily gives rise to flavor changing neutral currents (FCNC’s)

in the quark sector, and to lepton flavor violation (LFV) in the lepton sector at tree-

level [3, 5, 8, 6]. While these flavor violations are suppressed by the so-called RS-GIM
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mechanism [8, 6], the KK mass scale still has to be as large as 20 TeV in order to safely

suppress FCNC’s in the quark sector [9]. In the lepton sector the anarchic approach [10]

imposes a bound of order 10 TeV on the KK mass scale [11]. These bounds imply that the

theory is out of reach for the LHC and unlikely to be useful for solving the (little) hier-

archy problem. Reduction of these bounds require additional flavor symmetries [12, 13].

For the leptons, we have seen that such flavor symmetries are necessary to begin with, to

protect the mixing angles from becoming hierarchical. The aim of this paper is to show

that we can indeed use these flavor symmetries in the lepton sector to eliminate the LFV

bounds on the model, and at the same time get a realistic pattern of masses and mixings.

Recently, an alternative approach to lepton masses in RS was proposed in [14] (following

the suggestion of [15]), which however does not readily explain the appearance of the large

(non-hierarchical) neutrino mixing angles.

For our model, we pick the most popular global symmetry used in neutrino model

building, an A4 discrete symmetry [16, 17]. This, by the virtue of being discrete, has the

added benefit that no additional gauge bosons have to be introduced, even if the symmetry

is gauged. From the many studies of the implications of the A4 symmetry in 4D models we

expect that this symmetry can give the correct mixing structure. The mass hierarchies in

the charged sector can still be generated as usual in RS models via fermion overlaps. The

mass hierarchy in the neutrino sector is not that large, and can be readily incorporated

by choosing O(1) factors in the neutrino mass matrix. Finally, since A4 is a non-abelian

discrete symmetry it has the potential of greatly reducing bounds from LFV. The reason

for that is that by using a non-singlet representation under A4 we can force the bulk wave

functions of some of the left handed fields to be universal.

Indeed, we find that with appropriate choice of representations, the tri-bimaximal

mixing pattern [18] characteristic of the A4 symmetry can be reproduced by the leading

order operators. Higher order terms can result in non-zero θ13, while maintaining the

predictions for θ12, θ23 within the experimentally allowed range. Most importantly, our A4

based model eliminates all tree-level sources for LFV. In fact, LFV is completely absent

in the neutral current interactions, and shows up only through charged currents involving

neutrino mixing. In the original RS neutrino mass model of [2] these loops turn out to

be problematic [19], since the interaction of the heavy KK neutrinos with the SM fields is

unsuppressed. In our model, by putting the charged leptons in the bulk (and peaked on

the UV brane) these couplings are strongly suppressed and the bounds from loop induced

decays are significantly reduced. The most important experimental bounds in the lepton

sector are those from the electroweak precision (EWP) constraints. They are, however,

quite mild, with KK masses of order 3 TeV generically allowed as in most other RS models.

The above arguments show that introducing the discrete non-abelian lepton flavor

symmetry greatly improves over the generic RS lepton flavor models. Moreover, they are

also improving the straight 4D implementations of A4 neutrino models in several aspects.

First, they explain the hierarchy in the charged lepton sector. Second, by putting one

A4 breaking VEV on the UV brane (breaking the group to Z2), and the other on the

IR (breaking it to Z3) questions regarding vacuum alignment are eliminated. Finally, the

appearance of the correct right handed neutrino mass scale (somewhat below MP l and
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SU(2)L SU(2)R U(1)B−L A4 Z2

ΨL � 1 −1 3 −
Ψe,µ,τ 1 � −1 1, 1′, 1′′ +

Ψν 1 � −1 3 −
H (IR) � � 0 1 +

φ′ (IR) 1 1 0 3 −
φ (UV ) 1 1 0 3 +

Table 1: Fields and their gauge and flavor charges.

MGUT) can be explained by the partial compositeness of the right handed neutrino.

The paper is organized as follows: in section 2 we give the general setup, introduce

the A4 representations and calculate the mixing matrices at leading order. In section 3

we show the effects of higher dimensional operators on the mixing angles. In section 4

we present a numerical scan of the parameter space and discuss the electroweak precision

bounds. In section 5 we show that LFV is completely absent at the tree-level in this model,

and estimate the loop induced µ→ eγ branching fraction. We conclude in section 6.

2. The setup

We are assuming an AdS5 bulk metric

ds2 =

(

R

z

)2

(dxµdxνη
µν − dz2), (2.1)

with a UV brane at z = R (R is also the AdS curvature scale) and an IR brane at z = R′.

The magnitude of the scales is given by R−1 ∼ MP l and R′−1 ∼ 1 TeV. The electroweak

gauge group is extended to an SU(2)L × SU(2)R × U(1)B−L gauge symmetry in the bulk

to incorporate custodial symmetry [20]. This symmetry is reduced on the UV brane to the

SM group SU(2)L × U(1)Y , while it breaks down to SU(2)D × U(1)B−L on the IR brane.

The matter content is summarized in table 1. We assume that there is a separate

doublet for every SM lepton, including the right handed neutrino: an SU(2)L doublet, ΨL,

for every left handed doublet L, a separate SU(2)R doublet Ψe,µ,τ for every right handed

charged lepton, e, µ, τ , and a right handed doublet Ψν for every right handed neutrino ν.

A 5D fermion correspond to 2 Weyl fermions of opposite chirality in 4D:

Ψ =

(

χ

ψ̄

)

. (2.2)

In the KK decompostion, 4D chirality follows from the boundary conditions at the two

end points of the extra dimension. The Lorentz structure forces χ and ψ to have opposite

boundary conditions while a massless mode appears only for Neumann boundary condition

at both ends. For a complete description of fermionic boundary conditions see [21]. The

profile of the would-be zero mode is then entirely dictated by the 5D mass of Ψ. Conven-

tionally, this mass is normalized as c/R and for c > 1/2 (resp. c < −1/2), a χ-zero mode
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(resp. ψ-zero mode) is exponentially localized on the UV brane. In our setup, we assume

that the boundary conditions (in the absence of the localized mass terms) are chosen as:

ΨL =
(

L [+,+]
)

Ψe,µ,τ =

(

ν̃e,µ,τ [+,−]

e, µ, τ [−,−]

)

Ψν =

(

ν [−,−]

l̃ [+,−]

)

(2.3)

where [±] refers to a Neumann (Dirichlet) boundary condition on both branes for the χ

component, while the ψ̄ ones simply have the opposite conditions. Hence there is a left

handed zero mode for the left handed doublets in ΨL, and a single right handed zero mode

in Ψe,µ,τ and Ψν each.1 These fields have bulk masses (in units of the AdS curvature) given

by cL, ce and cν . For the general case these would be hermitian 3× 3 flavor matrices. This

is not the case here as we impose an A4×Z2 global symmetry in the bulk of the theory.

In order to get the correct neutrino mass spectrum, we assign the three charged lepton

doublets as well as the three right handed neutrinos to the 3 dimensional representation

of A4. Thus for these fields there is just one common c-parameter each: cL and cν . On

the other hand, we assign the right handed charged leptons to the three inequivalent one

dimensional representations of A4: 1+1’+1”. Thus there are three separate c’s in this

sector: ce, cµ and cτ . The purpose of the Z2 symmetry is to eliminate certain brane

localized operators that would otherwise contribute to the mass matrices at leading order.

The symmetry breaking is achieved via brane localized scalars. Besides the SM Higgs,

H, that is localized on the IR brane, we assume the following scalars to break the discrete

symmetries: φ on the UV brane and φ′ on the IR brane, both of which are in the 3 of A4.

We assume that these two scalars develop VEVs in different directions: φ breaks A4 to Z2,

while φ′ to Z3. This is achieved by the VEVs

〈φ′〉 = (v′, v′, v′), 〈φ〉 = (v, 0, 0), (2.4)

in the basis where the generator corresponding to generator S of A4 is diagonal (see ap-

pendix A for summary on A4). Note, that once such a basis is chosen, these are the

most general VEVs which preserve Z3 and Z2 subgroups of A4 respectively, up to a trivial

permutation of the basis.

We now write the most general Yukawa terms respecting both gauge and flavor symme-

tries (in addition one needs to write localized kinetic and potential terms for the localized

scalars):

LUV=−M

2Λ
ψνψν − xν

φ

2Λ
ψνψν + h.c.+ · · · , (2.5)

LIR=−yν

Λ′
ΨLHΨν−

ye

Λ′2

(

ΨLφ
′
)

HΨe−
yµ

Λ′2

(

ΨLφ
′
)′′
HΨµ−

yτ

Λ′2

(

ΨLφ
′
)′
HΨτ + h.c.+· · · ,

where ΨT =
(

χ, ψ̄
)

and · · · stands for higher dimensional operators. We use the notation

of [17] for writing A4-invariants: (),()′ and ()′′ denote the terms of 3× 3 that transform as

1,1′ and 1′′ respectively, see appendix A.

1It is well known that the [+−] boundary conditions (for a χ-type Weyl fermion) can lead to an extremely

light KK-state for c > 1/2. Here we are safe from this problem as the right handed zero modes which satisfy

this type of boundary conditions are localized close to the UV brane, i.e. c < −1/2.
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Once the electroweak and A4 symmetries are spontaneously broken, the boundary

terms lead to boundary conditions mixing all fermions. Then, the spectrum is obtained by

solving the bulk equation of motion in the presence of these mixed boundary conditions.

The light modes, however, are quite insensitive to the boundary terms, and so they can

be treated as a small perturbation. Hence to leading order the low energy spectrum may

be obtained by using the zero mode wave functions. This defines the Zero Mode Approxi-

mation (ZMA) whose accuracy depends on how light the light masses are. As the largest

mass is that of the τ , about 1 GeV, the ZMA turns out to be as accurate as mτR
′ ≃ 10−3

for zero mode masses.

To follow the conventional RS literature we introduce the RS flavor functions f and

F ; these give the wave functions of the zero mode fermions on the IR and UV branes:

χc(z) =
1√
R′

( z

R

)2 ( z

R′

)−c
fc =

1√
R

( z

R

)2−c
Fc and ψc(z) = χ−c(z), (2.6)

with

fc =

√
1 − 2c

√

1 − (R/R′)1−2c
, Fc =

√
2c− 1

√

1 − (R/R′)2c−1
. (2.7)

The IR boundary terms of (2.6) lead to the following Dirac mass matrices for the zero

mode charged leptons and neutrinos:

Me

D = fL
vHv

′

√
2R′Λ′2







yef−e yµf−µ yτf−τ

yef−e ωyµf−µ ω2yτf−τ

yef−e ω2yµf−µ ωyτf−τ






, (2.8)

Mν
D = yνfLf−ν

vH√
2R′Λ′







1 0 0

0 1 0

0 0 1






, (2.9)

where we have introduced the shorthanded notation fi = fci
and f−i = f−ci

), ω is the cubic

root of unity, ω = e2πi/3, and vH ∼ 250 GeV. The UV terms of (2.6) generate a Majorana

mass matrix for right handed neutrinos of the form:

Mν
M = F 2

−νR
−1







ǫs 0 0

0 ǫs ǫt
0 ǫt ǫs






. (2.10)

with ǫs ≡M/Λ and ǫt ≡ xνv/Λ.

Note, that while the mass hierarchy in the charged lepton sector is generated via

the wave function overlaps in the usual way, the non-degeneracy in the neutrino sector is

actually due to the two different kind of Majorana term allowed on the UV brane. As

discuss below, the required neutrino mass hierarchy will actually require ǫs ∼ ǫt. This is

more naturally achieved if the singlet Majorana mass is actually also originating from an

operator with a singlet scalar field VEV. This could for example be enforced by imposing

an additional Z3 global symmetry, and an additional scalar field ξ with VEV 〈ξ〉 = M .
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After integrating out the heavy right handed neutrinos, one ends up with a seesaw

type Majorana mass matrix of the left handed neutrinos

M̃ν
M ≡ −Mν

D · (Mν
M)−1 · (Mν

D)T

= −y2
ν

v2
HR

2Λ′2R′2

f2
Lf

2
−ν

F 2
−ν







1/ǫs 0 0

0 ǫs/∆ −ǫt/∆
0 −ǫt/∆ ǫs/∆






, (2.11)

with ∆ ≡ ǫ2s − ǫ2t . The diagonalization procedure is the same as that of usual A4 four-

dimensional models. The charged lepton mass matrix becomes diagonal once the left-

handed fields have been rotated as L→ V · L with

V =
1√
3







1 1 1

1 ω2 ω

1 ω ω2






, (2.12)

a symmetric unitary matrix. We emphasize already here the most important properties of

the A4 mass matrices: the left handed rotation needed for diagonalizing the mass matrix

is independent of the actual magnitudes of the masses, and the right handed rotation is

the unit matrix (i.e. no right handed rotation is necessary). Therefore, the charged lepton

masses are

V∗ ·Me

D = fL

√
3vHv

′

√
2R′Λ′2







yef−e 0 0

0 yµf−µ 0

0 0 yτf−τ






. (2.13)

The charged lepton mass hierarchies are due to the hierarchies on f−e,−µ,−τ and the A4

embedding of the right handed charged leptons allows for three different c’s which can be

set to generate the physical charged lepton masses.

Next we move to the light neutrino sector. We work in the basis of diagonal charged

leptons which is obtained by performing the rotation on the entire left-handed doublet

with V. Then, the light neutrino Majorana mass matrix is diagonalized by the Harrison-

Perkins-Scott (HPS) matrix [18]

UHPS =







√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2






, (2.14)

corresponding to θ13 = 0, sin2(2θ12) = 8/9 and θ23 = π/4. This tri-bimaximal mixing

matrix is very close to the the best fit obtained from present oscillation data. The neutrino

mass eigenstates are

UT
HPS ·V∗ · M̃ν

M · V∗ · UHPS = −m̃







1
ǫs+ǫt

0 0

0 1
ǫs

0

0 0 1
ǫt−ǫs






, (2.15)

where the overall mass scale is set by the combination

m̃ ≡ y2
ν

v2
HR

2Λ′2R′2

f2
Lf

2
−ν

F 2
−ν

, (2.16)
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The neutrino mass-squared splittings are given by

∆m2
12 ≡ |m1|2 − |m2|2 =

∣

∣

∣

∣

m̃

ǫs

∣

∣

∣

∣

2 [ 1

(1 + r)2
− 1

]

, (2.17)

∆m2
23 ≡ |m2|2 − |m3|2 =

∣

∣

∣

∣

m̃

ǫs

∣

∣

∣

∣

2 [

1 − 1

(1 − r)2

]

, (2.18)

with r ≡ ǫt/ǫs, |∆m2
12| = ∆m2

sol and |∆m2
23| = ∆m2

atm. Combining the last two relations

we see that r solves the following algebraic equation:

r3 − 3r − 2

(

x− 1

x+ 1

)

= 0, (2.19)

where x = ∆m2
sol/∆m

2
atm for |r| < 2 or x = −∆m2

sol/∆m
2
atm when |r| > 2. Finally, ǫs is

found by inverting one of the two relations, for instance,

ǫs =
m̃

√

∆m2
atm

×
(∣

∣

∣

∣

1 − 1

(1 − r)2

∣

∣

∣

∣

)−1/2

. (2.20)

When we impose the measured values [7] for the mass splittings

∆m2
sol ≃ 7.9 × 10−5 eV2, ∆m2

atm ≃ 2.6 × 10−3 eV2, (2.21)

we find four solutions for the neutrino mass spectrum corresponding to

r ≈ {0.79, 1.19,−2.01,−1.99}. (2.22)

The first (last) 2 solutions lead to a normal (inverted) hierarchy spectrum. Another general

feature of A4 is a prediction of the absolute neutrino mass scale, m̃. We find that the mass

of the heaviest neutrino ends up being slightly above the atmospheric splitting.

We close this section by presenting a set of numerical values for the Lagrangian pa-

rameters which reproduce the mass spectra. The brane positions are R−1 = 1019 GeV

and R′−1 = 1.5 TeV, in order to keep the KK gauge bosons (with mKK = 3 − 4TeV)

in the reach of the LHC. The Higgs VEV turns out to be vH = 255.5 GeV, which is ob-

tained after matching the bulk gauge couplings such that the weak boson masses as well

as the fine-structure constant at the Z pole take their physical values: mW = 80.40 GeV,

mZ = 91.19 GeV and α−1
em(mZ) = 128. As usual [22], we get a Higgs VEV slightly above

the SM value due to the suppression of the W,Z wave functions on the IR brane and the

additional contributions to the gauge boson masses from the wave function curvature terms.

The charged lepton masses are reproduced using the following choice of parameters:

cL = 0.51, ce = −0.75, cµ = −0.59, cτ = −0.51, ye = 1.53, yµ = 1.55, yτ = 3.04. Indeed,

together with Λ′ = R′−1 and v′R′ = 0.1, one gets me = 0.511 MeV, mµ = 106 MeV and

mτ = 1.77 GeV. We show later on that the model defined with this set of parameters passes

all leptonic electroweak precision bounds while perturbation theory remains under control

up to E = 3mKK . As we saw above, in the neutrino sector the solar and atmospheric

mass splittings, eq. (2.21), reduce the ratio r to only four possible values, eq. (2.22). The

corresponding mass spectra, as well as the Majorana masses on the UV brane (for Λ = R−1,

xν = 1 and cν = −0.37), are reported in table 2.
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r m1 m2 m3 MR vR

−2.01 53 54 18 −0.015 0.030

−1.99 55 54 18 −0.015 0.029

0.79 6.0 11 52 0.074 0.059

1.19 4.5 10 52 0.079 0.095

Table 2: Approximate numerical values of the neutrino masses and UV VEVs for the 4 possible

solutions of r ≡ ǫt/ǫs. The masses are given in units of 10−3 eV.

3. Higher order corrections and perturbativity bounds

After spontaneous breaking of A4 the lowest dimensional boundary terms of (2.6) generate

the tri-bimaximal pattern for the mixing angles as well as the charged lepton and neutrino

mass hierarchies. In order to consider this construction as really meaningful, it is necessary

to study its stability under corrections from higher dimensional terms on the branes as well

as radiative corrections. Another motivation for looking at deviations from tri-bimaximal

mixings is the possibility to get a non-zero θ13, in case it turns out to be non-vanishing

experimentally.

We focus first on the UV brane and show that the effects of higher dimensional A4

invariants lead to the same pattern for the Majorana mass matrix, except that some entries

become complex. This is the only source of non-zero θ13 in this model. We start with

writing down the most general higher order operators allowed on the UV boundary:

−δLUV =
∑

n>2

λn
φn

Λn
ψνψν + h.c. (3.1)

with n insertions of φ. Now due to the Z2-preserving VEV 〈φ〉 = (v, 0, 0), it is straightfor-

ward to show that φ3 transforms as φ under A4. Thus all the higher order effects that cannot

be reabsorbed into a redefinition of the lowest order parameters arise from one operator:

−δLUV = λ2
φ2

Λ2
ψνψν + h.c. (3.2)

This term contains actually three independent A4 invariants which lead to complex diag-

onal elements of the Majorana mass matrix and the pattern of (2.10) is to be replaced by:

Mν
M = F 2

−νR
−1







ǫs + δ1 0 0

0 ǫs + δ2 ǫt
0 ǫt ǫs + δ∗2






(3.3)

with δi ∼ O(v2/Λ2) and δ1 real. The complex entries induce both a deviation of θ12 from

its maximal value and a non-zero sin(θ13) of O(δ).

On the IR brane, we show that the higher order corrections can only affect θ12, as long

as Z3 remains unbroken on this boundary. Again we start with the most general higher

dimensional invariants which take the following form:

−δLIR =
∑

i=e,µ,τ

∑

n>2

λ′i,nΨ̄L
φ′n

Λ′n+1
HΨi +

∑

n>1

κnΨ̄L
φ′n

Λ′n+1
HΨν + h.c. (3.4)
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Since 〈φ′〉 = (v′, v′, v′) is Z3 symmetric, φ′2 transforms as 1+φ′. Then non-trivial corrections

reduce to terms with only one φ′ insertion:

−δLIR =
κ1

Λ′2
Ψ̄Lφ

′HΨν + h.c. (3.5)

Since it is suppressed by only one power of (v′/Λ′) compared to the lowest order terms,

this operator may easily destabilize the HPS pattern. The extra Z2 flavor symmetry is

useful here, as we now discuss. We choose the A4 triplets odd under this additional Z2,

and then this operator is forbidden by the Z2 symmetry. However, since φ′2 = 1 + φ′, the

next Z2 even operator generates the same type of correction as the one linear in φ′ but

with a higher suppression factor. In that case (3.5) has to be replaced by

−δLIR =
κ2

Λ′3
Ψ̄Lφ

′2HΨν . (3.6)

This operator corrects the Dirac neutrino mass matrix by introducing off diagonal elements

of O(v′2/Λ′2). As this term contains three independent A4×Z2 invariants, the diagonal

Dirac matrix of (2.9) becomes:

Mν
D = yνfLf−ν

vH√
2R′Λ′







1 + ǫ1 ǫ2 ǫ3
ǫ3 1 + ǫ1 ǫ2
ǫ2 ǫ3 1 + ǫ1






, (3.7)

with ǫi ∼ O(v′2/Λ′2). One can easily check (see appendix B) that only sin(θ12) is affected

and its deviation from the HPS prediction is of O(v′2/Λ′2).

There is another important feature we want to stress at that point, which is the fact

that there is no correction to the charged lepton mass matrix. This means that the Ψe,µ,τ

fields need not be rotated again to get to the diagonal charged leptons basis even in the

presence of these higher order terms. As we shall see in section 5, an immediate consequence

is the absence of tree level LVF in this model, even when higher dimensional operators on

are considered.

We close this section by presenting an NDA estimates for the allowed sizes of the

IR brane localized operators. These bounds are important for estimating how large the

deviations from the HPS mixing matrix could actually be. For this purpose, we write down

again the most general Lagrangian on the IR brane

−LIR =
yν

Λ′
Ψ̄LHΨν +

ye,µ,τ

Λ′2
Ψ̄LHφ

′Ψe,µ,τ +
κ2

2Λ′3
Ψ̄LHφ

′2Ψν + h.c. (3.8)

We require that the theory remains perturbative up to scale EN = NmKK, which corre-

sponds to the first N th KK modes of the theory being weakly coupled. We should require

N ≥ 3, such that at least the first few KK modes can be treated in perturbation theory.

We can then systematically require that by the time this energy EN is reached all loop

corrections are still smaller than the lowest order terms. For example, for the first operator

above there is a one loop correction to the Yukawa vertex itself (figure 1a), which implies

y3
ν

16π2

E3
N

Λ′3
≤ yν

EN

Λ′
, (3.9)
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(a) (b) (c)

Figure 1: Loop diagrams correcting the operators localized on the IR brane which are relevant

for NDA estimates.

where the linear running of the coupling has been taken into account. Recalling mKKR
′ ≃

2, this implies for Λ′ = R′−1 the perturbativity constraint

yν ≤ 2. (3.10)

Similarly, for the second operator there is a two-loop correction to the tree-level operator

(figure 1b), we get
y3

e

(16π2)2
E6

N

Λ′6
≤ ye

E2
N

Λ′2
→ ye ≤ 4 (3.11)

again for Λ′ = R′−1. Finally, the third operator gives a one-loop correction to the first

operator (figure 1c), which implies the relation

κ2

16π2

E3
N

Λ′3
≤ yν

EN

Λ′
→ κ2 ≤ 4yν ≤ 8. (3.12)

We can then estimate that the higher dimensional terms corrections to sin(θ12) are sup-

pressed compared to the lowest order term by at least 4(v′R′)2.

We now apply the same arguments on the UV brane where we have

−LUV =
M

2Λ
ψνψν + xν

φ

2Λ
ψνψν + λ2

φ2

4Λ2
ψνψν + h.c. (3.13)

We require that the theory remains perturbative up to the natural scale on that boundary,

namely until E = R−1. First of all we focus on the last operator which contribute at one

loop to its own vertex (figure 2d) which implies the usual constraint

λ2 ≤ 4π, (3.14)

where we assumed Λ = R−1. On the other hand, the second operator induces one-loop

corrections to the mass M , the third operator, as well as its own vertex. From the diagrams

of figures 2a, 2b and 2c we derive the following relations:

xν ≤ 4π
√
ǫs, xν ≤ λ

1/4
2

√
4π ≤ (4π)3/4 ∼ 7, xν ≤ 4π. (3.15)

We showed in the previous section that in order to reproduce the observed hierarchical

neutrino mass splittings, one must have ǫs ∼ ǫt with ǫt = xν(vR). Hence assuming a not
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(a) (b) (c)

(d)

Figure 2: Loop diagrams illustrating the NDA estimates on the UV brane.

so small suppression factor vR ∼ 0.1, such that θ13 is not dramatically tiny, the first of the

above relations rewrites as xν ≤ 16π2(vR) ∼ 15. Thus we end up with the perturbative

constraint

xν ≤ 7. (3.16)

4. Numerical scans and electroweak precision bounds

One of the main constraints in models with new physics at the TeV scale are the electroweak

precision measurements (EWPM). For RS models with custodial symmetry the generic

bound on the KK scale is about mKK ≥ 3 TeV, mostly from the contribution to the S-

parameter [20]. Here we will check that the lepton sector of our model indeed passes these

tests for KK scales of order 3 TeV.2,3

The simplest way of checking the electroweak precision constraints in an RS model

with bulk fields is to canonically normalize the SM gauge fields, and to determine the

parameters g5, g
′
5 and vH by requiring that the measured values of MW ,MZ and the

electromagnetic coupling e are reproduced. This choice is somewhat unconventional, since

MW is less accurately measured than GF , however it simplifies the matching of the 5D

parameters to the observables significantly. In this scheme all corrections to electroweak

precision observables will be contained in the fermion-gauge boson vertices, which can be

simply calculated by wave function overlaps, and compared to the SM predictions in terms

2It is possible to cancel the S-parameter by tuning all LH bulk fermion masses to be ∼ 0.5 [23], as it is

necessary in higgsless models [24]. In this case however one does not get any mass hierarchies and those

need to be introduced by hand as in [12].
3See also [25] for an attempt to reproduce the lepton masses and mixings with a lower KK mass scale.
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Figure 3: Deviation from SM Z couplings of lL and lR as function of c’s. dL = (gL
Z −gL

Z,SM )/gL
Z,SM

and dR = (gR
Z−gR

Z,SM )/gR
Z,SM are plotted in percent units. We tookR′−1 = 1.5TeV and usedmW =

80.403GeV, mZ = 91.1876GeV and e = e(µ = mZ) =
√

4π/128 as physical input observables. The

red regions are excluded by EWPM in the leptonic sector.

of the above input parameters, which for the lepton-Z-couplings are

gL
Z,SM = e

(

1

2
− m2

W

m2
Z

)

mZ

mW

√

1 − m2

W

m2

Z

, (4.1)

gR
Z,SM = e

mZ

mW

√

1 − m2
W

m2
Z

. (4.2)

In a warped extra dimension the couplings of the left and right handed charged leptons are:

gL
Z ≃ 1

2

∫ R′

R
dz

(

R

z

)4
[

[

g5La
L,3(z,mZ) + g̃5a

X(z,mZ)
]

χcL
(z)2

]

(4.3)

gR,i
Z ≃ 1

2

∫ R′

R
dz

(

R

z

)4 [
[

g5Ra
R,3(z,mZ) + g̃5a

X(z,mZ)
]

ψci
(z)2

]

. (4.4)

with a(z,mZ) the wave functions of the three neutral gauge fields containing the physical Z,

while the various g5’s denote the bulk gauge couplings.4 The origin of the deviations from

the SM predictions is the non-flatness of the Z wave function. If the Z boson was massless,

its wave function would be flat and the lepton couplings would become universal thanks

to the orthonormality of their wave functions. However as soon as the A4 symmetry is

imposed, the left handed lepton couplings remain flavor blind. In the ZMA the Z coupling

depends only on the bulk mass parameter cL. As usual we assume that the SM leptons are

localized on the UV brane, cL > 1/2, ce,µ,τ < −1/2. Since the τ is the heaviest lepton, it

has to be localized closest to the IR brane, so it will be most sensitive to the non-flatness

of the Z close to the IR brane, and so one expect the biggest deviations in the τ couplings.

4For completeness we review in appendix C how this quantities are calculated in terms of physical

observables.
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The couplings of the charged leptons have been measured very precisely at the LEP

experiment [7]. Here we will require that all lepton couplings are within 0.2% of the SM

prediction. The plots of figure 3 show the deviation of the charged lepton couplings to

the Z from their SM values as a function of the c’s. We see that, while the ce,µ,τ can

be as close to −1/2 as required to reproduce the charged fermion hierarchy, cL cannot

depart too much from 1/2 to remain within the experimental bound. The fact that cL is

preferred to be close to 1/2 may be surprising at first, but we remind the reader that these

vertex corrections also include the S-parameter. This is actually a welcome fact, since in

order to keep the τ Yukawa coupling perturbative we have to take cL close to 1/2 anyway.

Thus we conclude from figure 3 that with a 3TeV KK mass scale the electroweak precision

constraints in the lepton sector are safely satisfied.

Next we want to scan over the model’s parameters and show explicitly that the neu-

trino mixing angles, which deviate from the HPS pattern in the presence of higher order

operators, are within the allowed range of the existing results of the neutrino experiments.

Once the usual RS solution to the hierarchy problem is imposed, we still have 12 free pa-

rameters in our setup: 5 c’s, 5 Yukawas and 2 VEVs relevant for lepton masses v, v′, while

adding higher order operators brings 6 more coupling constants. We use the measured lep-

ton masses and the best fit neutrino mass splittings to fix 5 of the lowest order parameters,

which leaves still a lot of freedom to explore. Therefore we add some mild assumptions

in order to simplify the parameter space and to try to only focus on the main predictions

without having to go into the details of the structure of the higher dimensional operators.

First of all we impose cτ = −cL and keep cL as a free parameter. We also take the Yukawas

on the IR brane to saturate the perturbative bounds: ye,µ,τ = 2yν = 4. Thus imposing

mτ = 1.77 GeV, me = 0.511 MeV and mµ = 106 MeV in turn fixes v′ and ce,µ as functions

of cL. Hence all IR brane effects will be encoded in one parameter cL, which is constrained

by the EWPM as discussed above. On the UV brane the solar and atmospheric splittings

fix the ratio M/v and the overall neutrino mass scale. Then taking xν = 1 we end up with

v = v(cν) as the only free parameter on this boundary. Furthermore, (vR)2 controls the

size of θ13 generated through higher order corrections. Finally we present in figure 4 some

contours of the mixing angles in the plane (cL, cν) when one among the possible combi-

nations of higher order invariants are included on both branes. We considered separately

the effect on θ12 from the IR brane and the predictions for all angles from the UV brane.

In order to demonstrate the robustness of the tri-bimaximal pattern under higher order

corrections in this model we have selected the worst case where these operators saturate

their perturbative limits, namely for λ2 = 4π and κ2 = 8. We conclude from figure 4 that,

even when the deviations from HPS angles are the largest possible, there is still a viable

region satisfying the constraints sin2(2θ13) < 0.19 (90CL), sin2(2θ23) > 0.92 (90CL) and

0.73 ≤ sin2(2θ12) ≤ 0.95 (3σ) [7, 26]. Obviously the smaller the higher order terms are the

closer one would get to the HPS pattern.

5. Constraints from lepton flavor violation

Flavor models usually predict new sources of flavor violations, and so are only viable when

the flavor scale is pushed to very high values. The flavor scale for quarks in the usual
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Figure 4: Scan of the parameter space reduced to (cL, cν) as motivated in the text. The red regions

are excluded by electroweak precision constraint on the Z coupling. We then show within this

region some contours of the mixing angles delineating the largest values we typically obtain in the

presence of higher dimensional corrections. The two horizontal contours are for the following values

of sin2(2θ12) = 0.90, 0.95 (from bottom to top) where only the IR higher dimensional operator is

added with ǫ1 = ǫ2 = 0 and ǫ3 = 8(v′R′)2. The oblique lines are contours of sin2(2θ13) = 0.01, 0.19

(from left to right) and contours of sin2(2θ12) = 0.90, 0.95 (from left to right) generated by the

higher order Majorana mass on the UV brane, for δ1 = δ2 = 0 and δ3 = 4π(vR)2.

anarchic RS flavor models is around 20 TeV [9]. Thus it is very important to understand

what the possible sources of lepton flavor violation (LFV) are in this model of lepton

masses. Generically there are two types of LFV sources: tree-level LFV via the exchange

of heavy neutral particles (like Z’) or off-diagonal Z couplings, or loop induced rare decays

via charged current interactions.

Tree-level LFV operators have been considered in [11] (see also [27]), and it was found

that the lepton flavor scale is at least 5 TeV, and larger for smaller brane Yukawa couplings.

We will first show here that the structure of the A4 symmetry used here is such that all

tree-level sources of lepton flavor violation are absent in this theory. This can be seen in

the following way. By the choice of the A4 representation the wave functions of the left

handed SM fermions are flavor universal (since they have the same cL). So the only source

of flavor violations in the charged lepton sector is the choice of different ce,µ,τ necessary for

the mass hierarchies, and the brane Yukawa matrix (2.8). The couplings to the neutral bulk

fields like the KK tower of the Z are controlled by the ce,µ,τ , and will be non-universal.

Thus any RH rotation to diagonalize the brane Yukawa matrix would induce tree-level

LFV’s. However, we have seen that one of the magic properties of the A4 models is that

the charged lepton mass matrix is diagonalized by a single left handed rotation, and no

right handed rotation is necessary to diagonalize the mass matrix, as described in (2.13).

The left-handed rotation is harmless, since the bulk wave functions are universal in the

LH sector, while in the dangerous RH sector there is no rotation necessary. This implies

that there is a basis where the kinetic terms and the mass terms for the charged leptons
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are simultaneously diagonal, and so as a consequence there is no tree-level LFV in this

model. The lepton embedding in A4 provided us with the necessary conditions to ensure

the absence of LFV, namely universal left handed c’s and the absence of redefinition of the

right handed fields. Moreover we want to stress that this result remains unchanged once

higher dimensional brane operators are considered as they were shown not to affect the

rotation matrices of the charged leptons.

Thus all lepton flavor violation arises from charged current interactions. In the SM

loops involving neutrinos give extremely small contributions to rare decays, however in the

presence of heavy KK neutrinos this is no longer the case. For example in the case of the

original neutrino mass model of [2] the large splittings of the heavy neutrinos, together

with their unsuppressed couplings to the SM fields yield a large loop-induced µ→ eγ rate.

In fact, Kitano [19] showed that a bound of mKK > 25 TeV applies in this case. In our case

however there is a generic softening of this bound, due to the fact that the SM fermions

are now localized close to the UV brane, and therefore the charged current interactions

with the KK neutrinos will be suppressed. This will happen generically in any model with

bulk fermions. For the particular case of the A4 model the situation is even better: since

the second Yukawa coupling of the charged leptons involving the right handed neutrinos

is uniform due to the A4 representations, the interactions with all higgses (neutral or

charged) will be diagonalized in the same basis where the masses are diagonalized. So one

only needs to consider the exchange of charged W’s and their KK towers, together with

KK neutrinos. In fact, just as in the SM the loop induced contribution here will be finite.

The reason for that is that the allowed additional brane localized counter term is of the

form LHφ′σµνeRFµν , and this will be diagonalized once the charged lepton mass matrix is

diagonal. This is again a specific property of the structure of the A4 invariants.

Next we will give a rough estimate of the KK mass bound from these processes. We

will focus on loop induced µ→ eγ decays via to exchange of a W-bosons and KK neutrinos.

The branching fraction from the exchange of a heavy neutrino and a W was calculated by

Cheng and Li [28] and is given by (assuming the coupling to the W given by the usual SM

gauge coupling g):

B(µ→ eγ) =
3α

8π

∣

∣

∣

∣

∣

∑

i

U∗
µiUeiF

(

m2
i

M2
W

)

∣

∣

∣

∣

∣

2

(5.1)

where the sum over i indicates the sum over a generation of KK fermions, U is the PMNS

mixing matrix between the SM charged leptons and a generation of KK neutrinos, and the

function F is given by

F (z) =
1

6(1 − z)4
(10 − 43z + 78z2 − 49z3 + 18z3 log z + 4z4). (5.2)

First we specify to the case of the exchange of a SM W and a KK mode neutrino. For

z ≫ 1 the approximate expression is F (z) ≈ 2
3 + 3 log z

z . Also, the coupling between the

zero mode SM fermions, a KK neutrino and the zero mode W is suppressed at least by one

factor of fL, so there is an overall f4
L appearing in the rate. This is the main difference

compared to the analysis of [19]: there all SM fermions were localized on the TeV brane,
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so the interaction with a KK neutrino was unsuppressed. The leading term drops out due

to the unitarity of U , and so we are left with the approximation

B(µ→ eγ) < f4
L

54α

π

m4
W

m4
KK

δm2
KK

m2
KK

log2 mKK

mW
, (5.3)

where δmKK is the characteristic splitting among the KK modes in a given generation,

given by
δm2

KK

m2

KK

≈ y2v2

H

2m2

KK

. We find, that even for Yukawa coupling close to the perturbative

limit y ∼ 3, and cL close to the composite case cL = 0.5 the branching ratio is two orders

of magnitude below the experimental bound of 10−11 for a KK mass scale of 3TeV.

A slightly bigger contribution is obtained using the diagram where in addition to the

KK neutrino one exchanges a KK W. In this case the gauge coupling could be as large as

gfL

√

logR′/R. In addition the branching ratio (5.1) is suppressed by (mW/mKK)4 since

the decay rate Γ(µ → eγ) scales as the fourth inverse power of the exchanged gauge boson

mass. One needs to take the function F (z) at values z ∼ 1 for which it is approximately

given by F (z ∼ 1) ∼ 17
12 + 3

20(1−z). The universal piece drops out again due to the unitarity

of U and we get an upper bound to the resulting branching fraction of order

B(µ→ eγ) < f4
L

27α

800π

m4
W

m4
KK

δm2
KK

m2
KK

log2 R
′

R
, (5.4)

which again numerically is smaller than 10−13 for a 3TeV KK mass. Clearly since the

numerical contributions turn out to be not that far from experimentally interesting region

it would be very interesting to perform a more detailed calculation of the µ→ eγ branching

fraction in this model, including complete sums over KK towers (and also in general RS

models with bulk fermions and Majorana neutrinos).

6. Conclusions

Warped extra dimensions provide a successful framework for flavor models: hierarchies

in the masses and the mixing angles are naturally generated. Since neutrinos do not

show hierarchies in the mixing angles, and only a mild hierarchy in the mass spectrum,

one should introduce additional symmetries in the lepton sector. In this paper we have

augmented the lepton sector of the RS model with the most successful and economical

global symmetry used for neutrino mass models, the discrete non-abelian group A4. With

appropriate assignments of the A4 representations we can naturally achieve a successful

lepton mixing pattern, while the charged lepton mass hierarchy is implemented as usual

in RS models via wave function overlap. The A4 symmetry also eliminates all tree-level

sources of LFV in the neutral current sector, and so significantly lowers the bound on the

KK mass scale. LFV appears only through charged current loops, and we estimated that

the rate of µ→ eγ is safely below the current experimental bound. So the most significant

bounds on this model come from the EWP measurements, and as usual with KK mass

scales of order 3 TeV these corrections will be also safely within the experimental bounds.
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A. Summary of A4 group theory

A4 is an SO(3) subgroup which leaves the tetrahedron invariant. It has 12 elements, two

generators (S, T ) connecting all of them, and four irreducible representations: one three-

dimensional (3) and three one-dimensional (1, 1′ and 1′′, with (1′)∗ = 1′′). Their products

decompose as:

1′ × 1′′ = 1, 1 × 3 = 3

1′ × 1′ = 1′′, 1′ × 3 = 3

1′′ × 1′′ = 1′, 1′′ × 3 = 3 (A.1)

3x × 3y = 31 + 32 + 1 + 1′ + 1′′

where for the last line, with 3x = (x1, x2, x3), 3y = (y1, y2, y3) and working in a basis where

the three-dimensional representation of S is diagonal:

S =







1 0 0

0 −1 0

0 0 −1






, T =







0 1 0

0 0 1

1 0 0






, (A.2)

one has:

1 = x1y1 + x2y2 + x3y3 (A.3)

1′ = x1y1 + ω2x2y2 + ωx3y3 (A.4)

1′′ = x1y1 + ωx2y2 + ω2x3y3 (A.5)

31 = (x2y3, x3y1, x1y2) (A.6)

32 = (x3y2, x1y3, x2y1) (A.7)

with ω = e2πi/3 the cubic root of unity, satisfying:

1 + ω + ω2 = 0, ω∗ = ω2. (A.8)

Note also that one has: 3 × 1′ = 3 ∼ u(x1, ωx2, ω
2x3), where u ∼ 1′. The same holds for

3 × 1′′ with ω → ω2.
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B. θ13 = 0 and θ23 = π/4 at any order on IR brane

We explicitly show in this section that the higher dimensional operators on the IR brane

only affect θ12. We recall that the Dirac mass matrix on the IR brane in presence of higher

orders is of the form:

Mν
D =







α β γ

γ α β

β γ α






(B.1)

while at lowest order the Majorana mass matrix on the UV is:

Mν
M =







a 0 0

0 a d

0 d a






. (B.2)

After the seesaw the Majorana mass matrix for the left-handed neutrinos (in the basis of

diagonal charged leptons) shows the following pattern:

M̃ν =







b c c∗

c g f

c∗ f g∗






. (B.3)

Note that even for real input parameters this matrix has complex entries due to ω = e2iπ/3

factors that do not cancel out when the left-handed doublet is rotated with V. If c and g

were real, the Majorana mass matrix would be diagonalized with θ13 = 0 and θ23 = π/4.

In general it is a 3 × 3 complex symmetric matrix which thus contains 12 independent

parameters. They are the 3 real eigenvalues, the 3 mixing angles and 6 phases. Moreover

one can always redefine the neutrino fields to absorb 3 of them, leaving only 2 Majorana

phases and a CKM one. Thus with the redefinition νi → eiφiνi the mass matrix becomes:

M̃ν =







b e2iφ1 |c|ei(φc+φ1+φ2) |c|ei(φ1+φ2−φc)

|c|ei(φc+φ1+φ2) |g|ei(2φ2+φg) fei(φ2+φ3)

|c|ei(φ1+φ2−φc) fei(φ2+φ3) |g|ei(2φ3−φg)






. (B.4)

It is now not difficult to see that this matrix can be made real with φ1 = 0, φ2 = −φ3

and φ3 = φc provided that the relation 2φc = φg holds. Although the expressions of these

phases in terms of the input parameters are quite cumbersome, we checked that the latter

relation is satisfied in our model. Therefore we conclude that the most general higher

dimensional corrections on the IR brane can only modify θ12 from its HPS value.

C. Review of gauge breaking via BCs

We shortly review here how the bulk SU(2)L×SU(2)R×U(1)B−L gauge symmetry is broken

in this setup. The main goal is to define how to get the gauge boson profiles as we will need

them to compute the W and Z couplings to the standard model fermions. We note AL, AR

and AX as well as g5L, g5R and g̃5 the gauge fields and coupling constants associated with
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SU(2)L, SU(2)R and U(1)B−L respectively. On the UV brane, the gauge symmetry breaks

down to the SM gauge group SU(2)L × U(1)Y from Dirichlet BC5 for the SU(2)R fields:

z = R :



















AR,±
µ = ∂zA

L,±
µ = 0

∂zA
L,3
µ = 0

g̃5A
X
µ − g5RA

R,3
µ = 0

∂z(g5RA
X
µ + g̃5A

R,3
µ ) = 0

(C.1)

where A± ≡ (A1∓iA2)/
√

2. The chiral SU(2)’s are broken to the vectorial subgroup on the

IR brane by the finite VEV of a Higgs bidoublet 〈h〉 = diag(vH , vH)/2, and the resulting

(mixed) BCs are:

z = R′ :











∂z(g5LA
L,a
µ − g5RA

R,a
µ ) + V(g5LA

L,a
µ − g5RA

R,a
µ ) = 0

∂z(g5RA
L,a
µ + g5LA

R,a
µ ) = 0

∂zA
X
µ = 0

(C.2)

where V = (R′/R)(g2
5L + g2

5R)v2
H/4. The fifth components of the gauge fields have opposite

BC. Obviously, these BCs allow for a massless (flat) mode which is nothing else but the

photon field associated with the unbroken U(1) of the (compactified) effective theory, and

the KK decomposition is of the form:

AL,R,±
µ (x, z) = aL,R(z,mW )W±

µ (x) + · · · (C.3)

AL,R,3
µ (x, z) =

g̃5
g5L,R

a0γµ(x) + aL,R,3(z,mZ)Zµ(x) + · · · (C.4)

AX
µ (x, z) = a0γ(x) + aX(z,mZ)Zµ(x) + · · · (C.5)

where the · · · stand for heavier KK resonances, and the wave functions are given by

a(z,m) = z(AJ1(mz) +BY1(mz)).

Yet remains the definition of the 5D gauge couplings. For this we have to match the

latter on the 4D SM couplings. The fact that there is no SU(2)L × U(1)Y symmetry in

the effective 4D action makes the definition of the SM couplings somehow arbitrary. As

matching conditions, we choose to recover the measured values of mW , mZ and the elec-

tric charge e. After having fixed the values of R, R′ and the ratio of the left/right gauge

couplings, r ≡ g5L/g5R, three parameters remain to be determined by the matching pro-

cedure, namely g5L, g̃5 and vH . To fit them we proceed as follows. First, we relate g̃5 and

g5L by imposing that the (canonically normalized) photon couples to the electric charge

Q = T3,L + T3,R −QB−L/2. Given the KK decomposition above we get:

1

e2
=

(

1 + r2

g2
5L

+
1

g̃2
5

)

R log(R′/R). (C.6)

Then, the charged boson quantization equation fixes the product g5LvH as a function of

mW . And plugging back these two relations into the neutral boson quantization equation

5This can be thought as being the result of a Higgs mechanism in the limit where the localized scalar is

decoupled.
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allows to find the Higgs VEV as a function of mZ , mW and e. Finally to fully determine

the wave-functions we need to make the W and the Z are canonical fields by imposing:

∫ ′R

R
dz

(

R

z

)

[

aL,±(z,mW )2 + aR,±(z,mW )2
]

= 1 (C.7)

∫ ′R

R
dz

(

R

z

)

[

aL,3(z,mZ)2 + aR,3(z,mZ)2 + aX(z,mZ)2
]

= 1. (C.8)
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C. Csáki, Y. Grossman, G. Perez, Z. Surujon and A. Weiler, to appear.

[14] M.-C. Chen and H.-B. Yu, Minimal flavor violation in the lepton sector of the

Randall-Sundrum model, arXiv:0804.2503.

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C3370
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C3370
http://arxiv.org/abs/hep-ph/9905221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB474%2C361
http://arxiv.org/abs/hep-ph/9912408
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB586%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB586%2C141
http://arxiv.org/abs/hep-ph/0003129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C033005
http://arxiv.org/abs/hep-ph/9903417
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB498%2C256
http://arxiv.org/abs/hep-ph/0010195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB666%2C269
http://arxiv.org/abs/hep-ph/0303183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C201804
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C201804
http://arxiv.org/abs/hep-ph/0406101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C016002
http://arxiv.org/abs/hep-ph/0408134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG33%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG33%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB590%2C86
http://arxiv.org/abs/hep-ph/0310144
http://jhep.sissa.it/stdsearch?paper=09%282008%29008
http://arxiv.org/abs/0804.1954
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB544%2C295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB544%2C295
http://arxiv.org/abs/hep-ph/0205327
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB583%2C293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB583%2C293
http://arxiv.org/abs/hep-ph/0309252
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C053011
http://arxiv.org/abs/hep-ph/0606021
http://jhep.sissa.it/stdsearch?paper=04%282008%29006
http://arxiv.org/abs/0709.1714
http://arxiv.org/abs/0806.3757
http://arxiv.org/abs/0804.2503


J
H
E
P
1
0
(
2
0
0
8
)
0
5
5

[15] A.L. Fitzpatrick, G. Perez and L. Randall, Flavor from minimal flavor violation & a viable

Randall-Sundrum model, arXiv:0710.1869.

[16] E. Ma and G. Rajasekaran, Softly broken A4 symmetry for nearly degenerate neutrino

masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291];

K.S. Babu, E. Ma and J.W.F. Valle, Underlying A4 symmetry for the neutrino mass matrix

and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292];

E. Ma, A4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901

[hep-ph/0404199].

[17] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra

dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165]; Tri-bimaximal neutrino mixing,

A4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103].

[18] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino

oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074].

[19] R. Kitano, Lepton flavor violation in the Randall-Sundrum model with bulk neutrinos, Phys.

Lett. B 481 (2000) 39 [hep-ph/0002279].

[20] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision

tests, JHEP 08 (2003) 050 [hep-ph/0308036].
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